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ABSTRACT   

A prospective determination of the sample size enables researchers to conduct a study that 

has the statistical power needed to detect the minimum clinically important difference 

between treatment groups. With knowledge or assumptions about the study design, drop-

out rate, variation of the outcome measure, and desired power and alpha levels, the 

required sample size for a study can be calculated. This paper discusses methods for 

calculating sample size by hand and through the use of statistical software. It walks through 

the method for computing sample size using the POWER procedure and the GLMPOWER 

procedure in SAS® and compares the commands and user interfaces of SAS with R and 

nQuery software for sample size calculations. 

INTRODUCTION  

Selecting the appropriate sample size for a study is one of the fundamental tasks required 

of a statistician. Whether the statistician is determining the number of patients to enroll in a 

clinical trial, voters to complete a political poll, or mice to include in a lab experiment, the 

same input factors of power, significance criteria, and effect size can be used to successfully 

identify the sample needed. A sample that is too small can lead to an analysis that fails to 

identify any trends due to inadequate power, while a sample that is too large can lead to 

wasted time and resources. In clinical studies, sample size determination is not only a 

statistical issue, but an ethical issue. Enrolling too few subjects in a clinical trial can lead to 

unnecessary hardship and exposure to a study agent for a study that was never capable of 

drawing conclusions to establish efficacy of the compound. Enrolling too many subjects can 

cause potentially unnecessary exposure to inferior treatments. Sample size determinations 

can be completed by hand or through one of the many available software packages, such as 

SAS, R, and nQuery. 

BACKGROUND INFORMATION AND INPUTS 

STATISTICAL POWER 

Statistical power is defined as the probability of rejecting the null hypothesis when the 

alternative hypothesis is true, or, in other words, the probability of a correct rejection. 
Written mathematically, it can be represented as Pr⁡(𝑟𝑒𝑗𝑒𝑐𝑡⁡𝐻0|𝐻1⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒) or as 1 – β, where β 

is equal to the probability of Type II error (i.e. “false negative” result). Because power is a 

probability, it can take on values between 0 and 1. Although this may greatly differ based 

on the study design and field of study, conventional thresholds for statistical power are 

usually around 0.8 to 0.9 (80% to 90%).  

Statistical power and sample size are inextricably linked, with a positive correlation between 

power and sample size. That is, given equality of all other factors, a higher requirement of 

statistical power will yield a higher required sample size. Similarly, a higher sample size in a 

study will yield a higher power for that study if all other factors are held constant. 

Statistical power can be used to calculate the minimum sample size required to detect a 

specified effect size. For example, if the aim of a study is to detect a scientifically 

meaningful difference in growth of two plant varieties, and the desired power and alpha 
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level are pre-specified, the researcher will be able to calculate exactly how many plants to 

include in the experiment to identify the meaningful difference in growth. Similarly, it can be 

used to calculate a minimum effect size likely to be detected given a specified sample size. 

If the same researcher only had access to a limited number of plants, she or he could 

identify the effect size likely to be detected at a set level of power with the available sample 

size. 

Statistical power can be used to make comparisons between statistical tests. With all other 

factors equal, tests yielding higher power represent stronger evidence of the outcome 

identified than tests with lower power. Power analysis can reveal the statistical test likely to 

yield the highest level of evidence under varying sample sizes and effect sizes. 

Statistical power can also play a role in determining whether studies are stopped early. In 

longitudinal studies with elements of adaptive design at interim time points, it is common to 

pre-specify stopping boundaries based on the outcome. In these types of studies, it is 

imperative that stopping boundaries are pre-specified. When interim stopping rules are set 

up correctly, data supporting a strongly positive outcome can lead to an early termination of 

the study for efficacy, and data supporting a non-efficacious outcome can lead to an early 

termination of the study for futility.  

Power analysis improves the chances of conclusive results. When potential outcomes are 

examined prospectively and assumptions are well thought out, researchers can set up the 

study in a way that success is likely, and can avoid conducting studies that are likely to fail. 

Type I and Type II Error 

Statistics is the study of drawing inferences based on incomplete information. Therefore, 

there is inherent uncertainty in every statistical test completed. This uncertainty can be 

captured in two types of errors: 

 Type I Error: the probability of rejecting the null hypothesis when the null hypothesis is 

true (i.e. false positive). This is represented by α and can be written mathematically as  
Pr⁡(𝑟𝑒𝑗𝑒𝑐𝑡⁡𝐻0|𝐻0⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒). 

 Type II Error: the probability of accepting the null hypothesis when the alternative 

hypothesis is true (i.e. false negative). This is represented by β and can be written 
mathematically as Pr⁡(𝑎𝑐𝑐𝑒𝑝𝑡⁡𝐻0|𝐻1⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒).  

There must be a tradeoff between these two types of error, so statisticians set up statistical 

tests in a way that balances these types of error, carefully mitigating risk while considering 

the type of task to be completed.  

Table 1 depicts the types of statistical error associated with hypothesis tests and the 

relationships between the terms discussed. We can see that statistical power (1- β) is 

directly inversely proportional to Type II error (β). 

 

Table 1. Statistical Error Associated with Hypothesis Tests 
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Figure 1 graphically depicts the relationship between the types of statistical error in a two 

sample test (Image source: Verhulst, 2016). The graph on the left-hand side displays an 

example of a distribution of a null and alternative hypothesis for a normal distribution, and 

the graph on the right-hand side displays an example of the null and alternative hypothesis 

of a chi square distribution. The black line indicates the critical value selected for the test, 

with the area shaded in red indicating Type I error and the area shaded in blue indicating 

Type II error. The non-shaded region represents a correct decision of, in this example, no 

effect to the left of the critical value and the presence of an effect to the right of the critical 

value.  

 

Figure 1. Graphical Depiction of Statistical Error and Power with the Normal 

Distribution (left) and Chi Square Distribution (right)  

SIGNIFICANCE CRITERION 

The next factor necessary for computing sample size in a study is the significance criterion. 
This is represented by α and is defined as Pr⁡(𝑟𝑒𝑗𝑒𝑐𝑡⁡𝐻0|𝐻0⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒). It represents the probability 

of a “false positive” result, and has been described in the earlier section as Type I error. 

This value is another important assumption for calculating sample sizes. By convention, 

which may differ based on study design and field of study, this significance criterion is 

usually set at a value or 0.05 or less.  

EFFECT SIZE 

The next required factor for calculating sample size in a simple hypothesis test is the effect 

size, or the magnitude of the effect of interest in the population. The effect size 

encompasses both the absolute change in effect and the variability. It is important to 

specify an effect size that is meaningful for the question of interest. For clinical trials, effect 

size is quantified by a clinician and/or supported by literature outlining a clinically 

meaningful effect size. This could be the number of points of improvement on a test to truly 

make a difference in the patient’s quality of life, or the improvement of a disease condition 

to a greater degree than existing treatments. 

OTHER FACTORS THAT CAN INFLUENCE POWER 

We have discussed the factors that always need to be specified in a sample size calculation. 

These are: 

• Power (1-β): Pr(reject H0 | H1 true); correct rejection  

• Significance criterion (α): Pr(reject H0 | H0 true); false positive 

• Effect size: magnitude of the effect of interest in the population 

Null 
hypothesis 

Null hypothesis 

Alternative hypothesis 

Alternative 
hypothesis 
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Other factors that can influence power include the experimental design, precision, and 

expected rates of non-completion. There are many components of the experimental design 

that can influence the statistical power and consequently, the required sample size. Some 

examples of design factors that may influence statistical power include whether the number 

of observations in each sample group is balances or unbalanced, whether the hypothesis 

test is parametric or non-parametric, and whether the design of the study is crossover, 

parallel group, or factorial. 

The next factor that can influence statistical power is the precision of the instrument used to 

measure the parameter of interest. For example, categorizing variables into groups, such as 

numeric values grouped into “low”, “medium”, and “high”, results in reduced precision, a 

loss of information, and consequently a loss of power in the analysis. A reduction of 

measurement error improves statistical power, thus requiring a smaller sample size 

Another factor influencing power is the expected rates of non-completion. In studies on 

human subjects, it cannot be expected that everyone enrolling in the study will complete 

the study. Therefore, the experiment needs to be designed to account for a reasonable 

amount of treatment withdrawals and protocol violations. 

ADDITIONAL BACKGROUND INFORMATION FOR COMPUTING SAMPLE SIZE 

The sample size for a study is typically calculated based on the primary hypothesis of 

interest. Because of this, secondary and exploratory analyses may be underpowered and 

should not be used to make claims but can influence design of future studies. This is an 

important distinction, because many studies seek to answer several questions. While this is 

permissible to include multiple endpoints, only adequately powered endpoints should be 

used to draw conclusions. 

Generally, the sample size that is set at the beginning of the study is used as the guideline 

throughout the study. However, if pre-specified, sample size re-estimation can be 

performed while experiment is ongoing. This can be a useful technique to ensure the study 

is adequately powered if event rates are lower than anticipated or variability is larger than 

expected at the interim analysis time points (U.S. Department of Health and Human 

Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center 

for Biologics Evaluation and Research, & ICH, 1998). 

 

APPROACHES FOR COMPUTING SAMPLE SIZE 

COMPUTING SAMPLE SIZE BY HAND 

Sample size can be calculated by hand using standard formulas when the underlying 

distribution is assumed to be approximately normal. Among the required inputs, z-scores for 

the assumed power level and significance criteria need to be included. 

The z-score is derived based on the quantile of the standard normal distribution after the 

alpha (significant criteria) and beta (1 – power) terms are input. It equals the number of 

standard deviations away from the mean. 

Given a quantile of a normal distribution, the z-score can be found by looking in a z-table or 

use the functions in SAS or in R. 

The following function produces quantiles for the normal distribution under an assumed 

alpha level of 0.05 and beta level of 0.2: 

DATA TEST; 

  Q1=QUANTILE(“Normal”, 0.975); 

  Q2=QUANTILE(“Normal”, 0.8); 
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RUN; 

Output 1 shows the values of q1 and q2 assigned from the preceding data step. 

 

 
 

Output 1. Output Quantile Assignments Using the QUANTILE Function 

The following commands R equivalently compute the quantiles, and the output (in black) is 

immediately below the command (in blue): 

 

Example: 2 Sample T-Test, Equal Variances 

The following formula can be used to determine the sample size required for each group in a 

2 sample t-test using an approximation of the standard normal distribution.  

𝑛 =
2𝜎2(𝑧1−𝛼/2 + 𝑧1−𝛽)

2

𝛥2
 

Where:  

• n is the sample size required for each group 

• zx is the critical value at the point on the standard normal distribution corresponding with 

the quantile in subscript 

• 𝜎 is the standard deviation of the population 

• Δ is the standardized difference between the 2 groups 

This approximation is generally acceptable to use over the t distribution when the sample 

size is large (~>100). The values can be input into this formula and algebraically computed 

to obtain the sample size required for each group under the pre-specified conditions. 

Example: 2 Sample Test of Proportions 

The following formula can be used to determine the sample size required for each group in a 

2 sample test of proportions. 

𝑛 =
(𝑧1−𝛼/2 + 𝑧1−𝛽)

2[𝑝1(1 − 𝑝1) + 𝑝2(1 − 𝑝2)]

(𝑝1 − 𝑝2)
2

 

 

Where:  

• n is the sample size required for each group 

• zx is the critical value at the point on the standard normal distribution corresponding with 

the quantile in subscript 

• p1 is the proportion of events expected to occur in group 1 

• p2 is the proportion of events expected to occur in group 2 

The denominator, (p1-p2)2, is the minimum meaningful difference or effect size.  

COMPUTING SAMPLE SIZE USING SAS 
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There are two procedures available to compute sample size in SAS: PROC POWER and PROC 

GLMPOWER. The procedures are included in the SAS/STAT package, and have different 

capabilities that will be outlined in this section. Both procedures perform prospective power 

and sample size analyses. A prospective analysis is conducted when planning for a future 

study. Retrospective analysis, or power analysis of a study that has already taken place, is 

not supported by these procedures. 

PROC POWER is used for sample size calculations for tests such as: 

• t tests, equivalence tests, and confidence intervals for means,  

• tests, equivalence tests, and confidence intervals for binomial proportions, 

• multiple regression, 

• tests of correlation and partial correlation, 

• one-way analysis of variance, 

• rank tests for comparing two survival curves, 

• logistic regression with binary response, and 

• Wilcoxon-Mann-Whitney (rank-sum) test (SAS, 2010). 

PROC GLMPOWER is used for sample size calculations for more complex linear models, and 

cover Type III tests and contrasts of fixed effects in univariate linear models with or without 

covariates. (SAS, 2011).  

Inputs: Comparison of PROC POWER and PROC GLMPOWER 

Table 2Table 1 compares required inputs for PROC POWER and PROC GLMPOWER (SAS, 

2010; SAS, 2011). 

PROC POWER PROC GLMPOWER 

Design Design (including subject profiles and their 

allocation weights) 

Statistical model and test Statistical model and contrasts of class effects 

Significance level (alpha) Significance level (alpha) 

Surmised effects and variability Surmised response means for subject profiles (i.e. 

“cell means”) and variability 

Power Power 

Sample size Sample size 

Table 2. Comparison of Inputs for Power Procedures in SAS 

Not all of the inputs need to be filled out. Users should leave the result parameter (in this 

case, sample size) missing by designating it with a missing value in the input. If users are 

seeking to compute power with a predetermined sample size, the power field could be left 

missing if the sample size field is populated. 

The POWER Procedure 

The basic syntax of the POWER procedure is as follows: 
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PROC POWER <options> ; 

  LOGISTIC <options> ; 

  MULTREG <options> ; 

  ONECORR <options> ; 

  ONESAMPLEFREQ <options> ; 

  ONESAMPLEMEANS <options> ; 

  ONEWAYANOVA <options> ; 

  PAIREDFREQ <options> ; 

  PAIREDMEANS <options> ; 

  PLOT <plot-options> </ graph-options> ; 

  TWOSAMPLEFREQ <options> ; 

  TWOSAMPLEMEANS <options> ; 

  TWOSAMPLESURVIVAL <options> ; 

  TWOSAMPLEWILCOXON <options> ; 

RUN; 

When using this procedure, users should specify at least one analysis statement and 

optionally, one or more PLOT statements. The analysis statements are all of the other 

statements in the procedure besides the PLOT statement. Within each analysis statement, 

there are different keywords used to specify the inputs. These keywords can be found in the 

SAS documentation and in the following examples. Each PLOT statement refers to the 

previous analysis statement and generates a separate graph or set of graphs. 

Example: 2 Sample T-Test for Difference in Means 

A two-sample t test assuming equal variances uses the following syntax: 

PROC POWER; 

  TWOSAMPLEMEANS TEST=DIFF 

  GROUPMEANS = mean1 | . 

  STDDEV = . 

  NTOTAL = . 

  POWER = . 

; 

RUN; 

Users can solve for any of the factors indicated as missing with a “.” but all remaining 

factors need to be filled in. To calculate sample size, the NTOTAL field should be left missing 

with the other fields populated based on the underlying assumptions. Sample values have 

been input for illustrative purposes: 

PROC POWER; 

  TWOSAMPLEMEANS TEST=DIFF 

  GROUPMEANS = 120 | 108 

  STDDEV = 30 

  NTOTAL = . 
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  POWER = 0.8 

; 

RUN; 

Output 2 shows the SAS output from the PROC POWER statement with these sample values. 

We can see the informative display of each of the parameters as well as the computed N 

Total value of 200. This has been rounded up to the next highest integer, as the sample size 

needs to be a whole number.  

 

 
 

Output 2. Output from the POWER Procedure Using an Example of a Two-Sample t 

Test for Mean Difference 

When planning a study with limited resources, it is often advantageous to examine the 

effect of varying sample sizes on the statistical power. A useful plot can be produced by 

adding the following statement to the PROC POWER statement: 

PLOT X=POWER MIN=0.8 MAX=0.95; 

Figure 2 displays the output of this command, showing the total sample size required to 

attain to achieve a range of power values.  
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Figure 2. Required Sample Size for a Range of Power for a Two Sample t-Test 

Using PROC POWER 

Example: Chi-Square Test for Difference in Proportions 

The following code shows an example of how the POWER procedure can be used to compute 

a chi-square test for difference in proportions: 

PROC POWER; 

  TWOSAMPLEFREQ TEST=PCHI 

  GROUPPROPORTIONS = 0.8 | 0.5 

  POWER = 0.8 

  NTOTAL = . 

; 

RUN; 

Output 3 shows the SAS output from the PROC POWER statement for a Chi-Square Test for 

Difference in Proportions. The total sample size required for this example has been 

calculated to be 78. 
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Output 3. Output from the POWER Procedure Using an Example of a Chi-Square 

Test for Proportion Difference 

The GLMPOWER Procedure 

The basic syntax of the GLMPOWER procedure is as follows: 

PROC GLMPOWER <options> ; 

  BY variables ; 

  CLASS variables ; 

  CONTRAST ’label’ effect values <...effect values> </ options> ; 

  MODEL dependents = independents ; 

  PLOT <plot-options> </ graph-options> ; 

  POWER <options> ; 

  WEIGHT variable ; 

RUN; 

This procedure supports more complicated study designs, with additional options allowing 

for specification of contrasts and addition of covariates. To add a covariate, specify the 

ncovariates=1 option in the POWER statement and specify CORRXY, or the correlation 

between the covariate and response variable. Another useful customization in this 

procedure is the WEIGHT statement, which can be used for studies with an unbalanced 

design.  

Example: Two-Way ANOVA Test 

Sample size can be computed for a 2-way ANOVA using PROC GLMPOWER with the following 

syntax: 

PROC GLMPOWER DATA = dataset; 

  CLASS expvar1 expvar2; 

  MODEL responsevar = expvar1 | expvar2; 

  POWER 



11 

    STDDEV = . 

    NTOTAL = . 

    POWER = . 

; 

RUN; 

The procedure allows users to solve for any of the factors indicated as missing with a “.”, 

but all remaining factors need to be filled in. To calculate sample size, NTOTAL should be 

left missing. 

The first step is to create an exemplary data set with expected population means. In this 

example, these are lab values at each level of treatment and dose: 

DATA Exemplary; 

  DO trt = 1 to 2; 

    DO dose = 1 to 3; 

      INPUT lab @@; 

      OUTPUT; 

    END; 

  END; 

  DATALINES; 

    14 16 21 

    10 15 16 

  ; 

RUN; 

Output 4 shows the SAS output from the DATA step creating an Exemplary dataset for lab 

values at several treatment group and dose values. 

 

 
 

Output 4. Exemplary Dataset Created to Input in the GLMPOWER Procedure 

The next step is to input the exemplary dataset into the GLMPOWER procedure. In this 

example, standard deviation is assumed to be common in both groups: 

PROC GLMPOWER DATA = Exemplary; 

  CLASS trt dose; 

  MODEL lab = trt | dose; 

  POWER 

    STDDEV = 5 

    NTOTAL = . 
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    POWER = 0.8 

RUN; 

Output 5 shows the SAS output from the PROC GLMPOWER statement for a Two-Way 

ANOVA Test. 

 

 
 

Output 5. Output from the GLMPOWER Procedure Using an Example of a Two-Way 

ANOVA Test 

Similar to the feature in PROC POWER, users can add the following statement to the PROC 

GLMPOWER command to produce a plot: 

PLOT X=POWER MIN=0.1 MAX=0.9; 

Figure 3 identifies the total sample size to attain to achieve a range of power for the two-

way ANOVA test. 

 

Figure 3. Required Sample Size for a Range of Power for a Two-Way ANOVA Test 

Using PROC GLMPOWER 

COMPUTING SAMPLE SIZE USING R 
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R has several functions available for computing sample sizes. These functions are contained 

in the “pwr” package, which needs to be downloaded before attempting to run any of these 

functions.  

Another input parameter that needs to be calculated ahead of time before using the 

functions is d, which is defined as follows: 

𝑑 = ⁡
|𝜇1 − 𝜇2|

𝜎
 

Where µ1 = mean of group 1, 

 µ1 = mean of group 2, and 

 σ2 = common error variance. 

Once these steps are completed, users can proceed with inputting values into the R function 

associated with the appropriate statistical test. 

Example: 2 Sample T-Test for Difference in Means 

The syntax of a sample size calculation for a 2 sample t-test in R is:  

pwr.t.test(n = , d = , sig.level = , power = , type = c(“two.sample”, 

“one.sample”, “paired”)) 

This example inputs the same values as in the previous example where we used PROC 

POWER in SAS to conduct the sample size for a 2 sample t-test. Similar to SAS, we can 

leave the field we want to calculate as blank. In this case, we leave “n=” as blank to 

compute the sample size: 

pwr.t.test(n =, d = 0.4, sig.level = 0.05, power = 0.8, type=“two.sample”) 

Output 6Output 5 shows the R output from the pwr.t.test function for a 2 sample t-test. 

Note that the output in R is slightly different, as the output has not been rounded up to the 

nearest whole number. The output also displays the required number of subjects for each 

group rather than overall, as it did in the SAS output. 

 

 
 

Output 6. Output from the pwr.t.test Function in R Using an Example of 2 Sample 

T-Test 

We can produce a plot in R similar to the plot produced in SAS. This can be done by 

submitting the following statements, where we assign the power output to an object in R 

and plot the object: 

> x <- pwr.t.test(n = , d = 0.4, sig.level = 0.05, power = 0.8, 

type=“two.sample”) 

> plot(x) 

Figure 4 identifies the total sample size to attain to achieve a range of power for the 

example of the 2 sample t-test. 
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Figure 4. Required Sample Size for a Range of Power for a Two Sample t-Test 

Using R 

Syntax of Functions for Other Tests 

Sample sizes can be computed for other statistical tests using different functions. Some 

examples are listed below: 

• t test with unequal sample sizes:  

pwr.t2n.test(n1 =, n2 = , d = , sig.level = , power = ) 

• One-way ANOVA: 

pwr.anova.test(k = , n =, f = , sig.level = , power = ) 

f = ⁡√
∑ pi ∗ (μi − μ)2k
i=1

σ2
 

Where pi = ni/N, 

 ni = number of observations in group I, 

 N = total number of observations, 

 µi = mean of group i, 

 µ = grand mean, and 

 σ2 = error variance within groups. 

• Chi-square test:  

pwr.chisq.test(w = , N = , df = , sig.level = , power = ) 
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w =⁡√∑
(p0i − p1i)

2

p0i

m

i=1

 

Where p0i = cell probability in the ith cell under H0, and 

 p1i = cell probability in the ith cell under H1. 

• Other designs include linear models (pwr.f2.test), correlations (pwr.r.test), test of 

proportions (pwr.2p.test/ pwr.2p2n.test/ pwr.p.test) 

COMPUTING SAMPLE SIZE USING NQUERY 

Lastly, we’ll demonstrate how to compute sample size using nQuery. Display 1 shows the 

nQuery Wizard interface, which recommends a statistical test based on the study design and 

goals. 

 

Display 1. nQuery Wizard Interface 

Example: 2 Sample T-Test for Difference in Means 

Proceeding with our example computing the sample size for a two sample t-test, we can see 

in Display 2 the user interface for nQuery. In this second step, the user fills in known 

information and the software defines and suggests values, as in the example below. 
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Display 2. nQuery Wizard Interface: Enter Background Information 

A useful feature of nQuery is that it automatically fills in fields once enough information is 

entered. For example, the Difference in means value is populated after Group 1 and Group 2 
are filled out, and the Effect size is populated after Difference in means and σ are filled out. 

As we’ve seen in the other software demonstrations, the field of interest should be left 

blank. Once enough information is filled out in the other fields, the result for the blank field 

will be shown in the output, which is automatically generated. 

Display 3 shows the menu bar in nQuery, where the users can click on the graph icon on the 

right-hand side of the menu to produce a plot that identifies the total sample size to attain 

to achieve a range of power. 

 

Display 3. nQuery Menu Bar, Indicating the Location of the Graph Icon 

Figure 5 displays the result of the graph command in nQuery, producing a plot of sample 

size against power. 



17 

 

Figure 5. Required Sample Size for a Range of Power for a Two Sample t-Test 

Using nQuery 

 

CONCLUSION 

All of the software packages described in this paper are useful for computing sample sizes, 

and can accomplish many of the same tasks. Users should determine the software package 

based on familiarity with the software and their anticipated needs. The advantages of each 

software package individually as well as the shared advantages are outlined below. 

SAS: 

• Ability to calculate sample size for complex linear models and contrasts 

• Blend of user friendly features and advanced options 

• Requires SAS/STAT package 

SAS and R 

• Can quickly and easily test a range of values 

• Plots are easily customizable 

• Sample size can be computed in a program so it is easily replicable and “macrotized” 

R 

• Requires more extensive computations by the user for input parameters 

• Plots are most informative 
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• Requires “pwr” package 

• Free and open source 

R and nQuery 

• Limited in their ability to compute sample size for very complicated models 

• Choose test first and then enter inputs, rather than customizing inputs to influence test 

nQuery 

• Wizard interface, so no programming required 

• Explanations of each input parameter and plain text description of output 

• Great for non-programmers 

nQuery and SAS 

• No extensive computations required by the user 

• User-friendly 

• Capabilities for many tests 

• Not free, but documentation is comprehensive 
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